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A BOUNDARY ELEMENT METHOD FOR VISCOUS GRAVITY

CURRENTS
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SUMMARY

The viscous gravity spreading of a blob of ¯uid on a rigid, horizontal, no-slip surface is studied numerically by
applying the boundary-element method to the Stokes equation in plane symmetry. The two-dimensional unsteady
solution is obtained by solving the biharmonic equation for the streamfunction in a given domain to obtain the
velocity ®eld, which is then used to track the contour. The spreading is developed by letting adhere to the rigid
boundary any ¯uid element set in contact with it. A detailed description of the two-dimensional ¯ow near the
head of a viscous gravity current shows a typical rolling motion which characterizes the advancing mechanism of
the spreading. In particular, we obtain scaling laws for the shape and size of the current head in good agreement
with previously reported experimental data. Attention is also paid to the validation of the numerical method.
# 1997 by John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 25: 1±19 (1997).

No. of Figures: 14. No. of Tables: 0. No. of References: 27.

KEY WORDS: boundary elements; viscous ¯ow; gravity currents; Stokes; creeping; spreading

1. INTRODUCTION

This work is concerned with the numerical calculation of the spreading of a very viscous ¯uid over a

horizontal no-slip surface (substrate) under the action of gravity g. This current belongs to a wider

family of ¯ows known as creeping ¯ows (negligible inertia), which have been the subject of several

works,1±4 mainly in the ®eld of geology, geophysics, industrial engineering and environmental

sciences.

From the theoretical point of view, viscous gravity spreadings have been studied mainly under the

lubrication approximation,5±8 but even for quite ¯at liquid distributions this approximation is

inadequate near the front where large slopes are present. Therefore a fully two-dimensional treatment

is required to describe the head region, which contains the most attractive physical features of the

¯ow. However, unlike the case of inertial gravity currents (high Reynolds numbers), where several

studies have been devoted to describe the ¯ow at the current head,9±11 no equivalent attention has

been paid to the study of the ¯ow at the head of viscous gravity currents. As regards laboratory-scale
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experiments,12 Huppert6 reported a curling over of the free surface at the front and recently Marino et

al.13 determined the shape pro®le and its evolution. These experiments, concerning the spreading of

relatively large ¯uid volumes (V> 30 cm3) in axial symmetry, revealed the presence of a ®rst stage

practically unaffected by the surface tension g, or pure gravity stage, characterized by a round-like

shape of the current head. The size h� of this con®guration decreases as the spreading advances, till it

becomes of the order of the capillary length a � ���p g=rg� (r is the density). At that moment the pure

gravity stage ends and the ¯ow enters into a second stage characterized by a wedge-like shape of the

current head, mainly due to capillarity effects. The present work is addressed to a fully two-

dimensional numerical study of the ¯ow during the pure gravity regime, which, according to

experimental observations, exhibits interesting features such as the geometrical similarity of the

round-like shape of the current head. Besides, this regime is the relevant one for large-scale natural

creeping ¯ows such as spreading lava domes, mud ¯ows, etc.1

As our interest is mainly centred on the head of the current, a description in plane geometry is well

suited for comparison with experiments in axial symmetry. Thus we develop a numerical code based

on the boundary element technique, which has proved to be adequate for the biharmonic equation that

results from the Stokes equation in plane symmetry. The equations are solved formally by a pair of

integral equations involving the, as yet unknown, values of the dependent variables and their normal

derivatives on the boundary. The contour is approximated by a polygon, so that the integrals

appearing in the formal solution are replaced by sums of integrals, one for each side of the polygon.

The basis of the technique has been reviewed by Jaswon and Symm,14 and since then, several authors

have contributed to the subject: Fairweather et al.15 introduced the use of piecewise quadratic

polynomial approximations for the solution of the Laplace equation; Kelmanson16 obtained analytic

expressions for the piecewise integration of all the kernel functions and used the method to solve

steady problems; Kelmanson17 and Lu and Chang18 extended the boundary integral method to

problems with non-planar free surfaces.

In steady problems the shape of the contour is usually determined by an iterative procedure, so that

the boundary condition on the normal stress is ®nally satis®ed within a prescribed error. This

approach has been used, for instance, by Goodwin and Homsy19 to calculate a quasi-steady

approximation of the ¯ow of a viscous ¯uid down a slope near the contact line. In unsteady ¯ows the

free pro®le does not coincide with a streamline; therefore the boundary conditions at the free surface

are more complicated than in steady ¯ows. The idea is to obtain the velocity ®eld corresponding to a

given initial boundary (free surfaces plus no-slip surfaces). Then the new contour shape is tracked by

moving the grid points (nodes) according to this velocity ®eld and so on. This approach has been used

by Kuiken20 to calculate the evolution of an isolated two-dimensional liquid region under the

in¯uence of surface tension alone.

For the purpose of this work we develop an extension of the method for unsteady problems with

gravity as the driving force and also with free and no-slip surfaces. The instantaneous velocity ®eld

calculated by the code is validated by comparison with an analytical solution for the ¯ow in a corner

region determined by a straight rigid boundary and a straight free surface. Furthermore, the ability of

the code to give a time evolution is demonstrated by resorting to the reversibility of Stokes ¯ows. A

relevant point is the spreading mechanism: we simply assume that any ¯uid element reaching the

substrate remains adhered there. This mechanism is numerically simulated by keeping ®xed the

position of the successive nodes of the free surface as they reach the substrate and then by considering

them as nodes of the no-slip surface. The numerical simulations show that the front advances by a

rolling motion of a round-like current head with a characteristic shape decreasing in size. This current

head shape agrees quantitatively with measurements13 as long as its size is larger than a. Moreover,

within the above limit the scaling laws for the size obtained from simulations are also in excellent

agreement with experiments.
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In Sections 2.1 and 2.2 we give an overview of the biharmonic boundary integral method and in

Section 2.3 we present the boundary conditions for both free and no-slip surfaces in terms of the

current function c and vorticity o. The technique used to obtain the instantaneous ¯ow ®eld and the

new contour shape is described in Section 2.4 and the code validation is presented in Section 3. In

Section 4 we study the blob spreading and ®nally in Section 5 we summarize and discuss the results.

2. FORMULATION OF THE METHOD

2.1. Basic equations and boundary conditions

For incompressible and very viscous ¯ows, i.e. Reynolds number tending to zero, the equation of

motion reduces to the so-called Stokes equation, namely

Hp � mH2v� rg � mH� o� rg; �1�
where p is the pressure, v is the velocity vector, m is the viscosity and g is gravity. Also, we de®ne the

(minus) vorticity o � ÿH� v and use the incompressibility condition

H � v � 0: �2�
We consider a ¯uid bounded by both free surfaces and no-slip rigid surfaces. At the free surfaces

both the normal and tangential stresses are equal to zero, as the interaction with a virtual external

¯uid is neglected. The resulting boundary conditions are

sijnitj � 0 and sijninj � 0; i; j � 1; 2; �3�
where ni is the outward normal, ti is the tangent unit vector oriented counter-clockwise and sij is the

stress tensor given by

sij � ÿpdij � m
@vi

@xj

� @vj

@xi

 !
: �4�

At the no-slip rigid surfaces both the normal and tangential components of velocity are zero, i.e.

vt � vn � 0: �5�
Now we limit ourselves to a fully two-dimensional plane geometry with horizontal and vertical co-

ordinates x and y respectively. The components of v may be written in terms of the streamfunction c
as (see (2))

vx �
@c
@y
; vy � ÿ

@c
@x
; �6�

so that Stokes equation (1) takes the well-known form21

H2c � o; H2o � 0: �7�
In consequence, the problem reduces to ®nding the functions c(x, y) and o(x, y) within the domain

containing the ¯uid (whose shape is supposed to be known) under the above boundary conditions

conveniently expressed in terms of c and o (see next subsection). The velocity and pressure ®eld can

later be obtained from (6) and (1) respectively. Note that as the time t does not occur explicitly in the

equations, the time evolution of the ¯ow is determined by the deformation of the free contour

resulting from the instantaneous velocity ®eld, which in turn depends only on the instantaneous

contour shape (and not on its rate of change).
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2.2. Biharmonic boundary integral method

As (7) is the split form of the biharmonic equation H4c� 0, we solve it by using the biharmonic

boundary integral method.14,16 Green's theorem for a domain O enclosed by a boundary @O allows us

to express c and o at an arbitrary point p 2 O� @O in the form

Z�p�c�p� �
�
@O

c�q� @G1�p; q�
@n

ÿ @c�q�
@n

G1�p; q�
� �

dq� 1

4

�
@O

o�q� @G2�p; q�
@n

ÿ @o�q�
@n

G2�p; q�
� �

dq;

Z�p�o�p� �
�
@O

o�q� @G1�p; q�
@n

ÿ @o�q�
@n

G1�p; q�
� �

dq; �8�

where q 2 @O and Z(p) is given by14

Z�p� �
0; p 62 O� @O;
j; p 2 @O;
2p; p 2 O:

8<: �9�

Here, j is the internal angle (in radians) between the tangents to @O on both sides of p 2 @O. The

Green functions G1 and G2 are16

G1 � log jpÿ qj; G2 � jpÿ qj2�log jpÿ qj ÿ 1�: �10�

The governing integral equations (8) over the boundary @O can be discretized by assuming that the

boundary is formed by a succession of straight segments where the functions c, @c=@n, o and @o=@n
may be taken as constants (Figure 1). Thus, following Kelmanson,16 the discretized form of (8) can

be represented by

Ac� Bc0 � Cv� Dv0 � 0; Av� Bv0 � 0; �11�

where A, B, C and D are m6m matrices and c, c0, v and v0 are the vectorized values of c, @c=@n,

o and @o=@n at the middle of the segments respectively. The polygonally discretized boundary @O
yields analytical expressions for the elements of these matrices.14,16 In addition to the algebraic

system (11) of 2m equations and 4m unknowns, there is a set of 2m equations resulting from the

boundary conditions.

Figure 1. Representation of contour by a polygon. All the variables are de®ned at the segment midpoints
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2.3. Boundary conditions in terms of c and o

Equation (6) may be conveniently written in terms of the normal and tangential directions as

vn �
@c
@t
; vt � ÿ

@c
@n
; �12�

whence the boundary condition (5) on a rigid no-slip surface may be satis®ed by requiring

@c
@n
� 0; c � const: �13�

along this portion of the boundary.

Analogously, at a free surface the zero-tangential-stress boundary condition given by (3) may be

expressed as

sijnitj � m
@vn

@t
� @vt

@n

� �
� 0; �14�

so that in terms of c we have

@2c
@t2
ÿ @

2c
@n2
� 0: �15�

Hence the vorticity at the contour is

o � H2c � @
2c
@t2
� @

2c
@n2
� 2

@2c
@t2

: �16�

As in the numerical calculation the values of c, o, etc. are de®ned only on the contour, it is

convenient to express the derivatives with respect to the tangent direction t in terms of derivatives

with respect to the contour arc length s. Thus @=@t coincides with @=@s and22,23

@2c
@t2
� @

2c
@s2
� k

@c
@n
; �17�

where k� df=ds is the local curvature of the free surface, with f the angle between the x-axis and

the tangential unit vector t. Here k is positive if the centre of curvature is within the ¯uid region. The

zero-tangential-stress condition (15) is then written as

ÿo� 2
@2c
@s2
� 2k

@c
@n
� 0: �18�

On the other hand, the condition on the normal stress given by (3) takes the form

ÿp� 2m
@vn

@n
� 0: �19�

Then, using (12) and the identity22

@2c
@t@n
� @2c
@s@n
ÿ k

@c
@s
; �20�

we have

ÿp� 2m
@2c
@s@n
ÿ k

@c
@s

� �
� 0: �21�
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Note that this boundary condition involves not only c and o but also the pressure p. By using the

tangential component of the Stokes equation (1), this quantity may be expressed in terms of c and o
as

@p

@t
� Hp � t � ÿm @o

@n
ÿ rgty; �22�

where ty is the y-component of the tangent unit vector. Thus by deriving (21) with respect to s,

eliminating @p=@s (� @p=@t) through (22) and using (20), we get

@o
@n
� 2

@2

@s2

@c
@n
ÿ 2

@

@s
k
@c
@s

� �
� ÿ rg

m
ty: �23�

A similar expression (without gravity but with capillarity) has also been used by Kuiken.20 In

summary, the boundary conditions for a free surface in terms of c, @c=@n, o, @o=@n and their

derivatives with respect to s are given by (18) and (23).

The third and fourth sets of m equations needed to complete the algebraic system of (11) may now

be constructed by combining simultaneously the conditions at both the no-slip surface and the free

surface. In fact, the third set is the discretized form of both (13) and (18):

Rc� Sc0 � Tv � 0; �24�
where R, S and T are m6m matrices. For the ith segment at a no-slip surface we have Sij� dij and

Rij� Tij� 0, while at a free surface R is a tridiagonal matrix containing the centred second-order

derivative operator on the arc length s, Sij� kdij and Tij�ÿdij.

Analogously, the fourth set of m equations is obtained from (13) and (23). The corresponding

algebraic system is

Uc� Vc0 �Wv0 � b; �25�
where U, V and W are m6m matrices and b is a vector. The condition c� 0 at the ith segment of a

no-slip surface requires Uij� dij, Vij�Wij� 0 and bi� 0. On a free surface the elements of U, V and

W contain the centred second-order discretized derivative operators of (23), with

bi � ÿ
rg

m
ty

� �
i

: �26�

2.4. Calculation of instantaneous ¯ow and time evolution of contour

The key step in the solution of an unsteady problem is the determination of the instantaneous ¯ow

for a given contour and boundary conditions. Here this is done by solving simultaneously the

governing equations (11) and the corresponding boundary conditions (24) and (25) in the vector form

(4m6 4m)

A B C D

0 0 A B

R S T 0

U V 0 W

0BB@
1CCA?

c
c0

v
v0

0BB@
1CCA �

0

0

0

b

0BB@
1CCA; �27�

where the matrices A, B, C and D are dense and R, S, T, U, V and W are sparse. We observe

that in general this matrix is ill-conditioned for conventional iterative algorithms, so we solved it by

an LU decomposition.
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In the problems with mirror symmetry with respect to the x-co-ordinate we only solve the half-

space x> 0, i.e. the calculation is limited to m=2 segments. In this case the coef®cients of the

(m=2)6 (m=2) matrices A, B, C and D must be modi®ed taking into account that c(ÿx, y)�ÿc
(x, y) and o(ÿx, y)�ÿo(x, y) in the Green integrals of (8). The coef®cients of the (m=2)�
(m=2) matrices R, S, T, U, V and W are unaltered and then the matrix of (27) is reduced to 2m6 2m.

Once (27) is solved, the Green integrals of (8) give c and o within the ¯uid region in terms of the

values of c, @c=@n, o and @o=@n at the contour. To obtain the time evolution of the contour, the

nodes are moved according to their corresponding velocities with the Euler approximation

x�t� Dt� � x�t� � vxDt; y�t� Dt� � y�t� � vyDt; �28�

where t is the time and vx and vy are calculated from c and @c=@n with second-order approximation.

Usually, after several time steps the distribution of the nodes becomes inadequate to properly

discretize the contour, because of the piling of nodes and the appearance of abrupt variations in the

segment lengths. This requires a reallocation of the nodes, which is done by ®tting a cubic spline of

the advanced contour; as a consequence, the number of nodes may then differ from one time step to

another. The length of the segments is made to vary linearly along the contour from a minimum Ds0

to a maximum Dsq. We ®nd empirically that when the length of a segment is such that Ds � k> 0�6,

the solution becomes inconsistent, so that the shorter segments must be allocated in the regions of

high curvature (k is calculated by a second-order approximation of dy=ds, with y the angle of the

adjacent segments with respect to the positive x-axis).

In summary, we obtain the time evolution of the contour by iterating the following procedure:

matrix building, boundary value calculation, node advancing, spline ®tting and contour regridling. In

practice, this scheme is stable provided that each node is advanced a small fraction (typically less

than 0�3) of the adjacent segment length; however, we ®nd it convenient to reduce this fraction by an

order of magnitude.

3. VALIDATION OF THE CODE

3.1. Instantaneous velocity ®eld: Flow in a corner

The calculation of the instantaneous velocity ®eld is validated by comparison with the velocity

®eld provided by an exact analytic solution for the ¯ow in a corner of angle a limited by a plane rigid

boundary and a plane free boundary (Figure 2). It is well known that this problem admits separated

solutions in polar co-ordinates (r, y) of the form16,24

c�r; y� � rl�1f �y�; �29�

where l is a real or complex constant and

f � A1 cos��l� 1�y� � A2 sin��l� 1�y� � A3 cos��lÿ 1�y� � A4 sin��lÿ 1�y�; �30�

with A1, A2, A3 and A4 constants to be determined.

The boundary conditions (13) for y� 0 and (18) for y� a give

f �0� � f 0�0� � 0; �31�
f 00�a� ÿ f �a��l2 ÿ 1� � 0: �32�
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These conditions determine A2, A3 and A4 in terms of A1 as

A2 �
A1

l� 1

�l� 1� cos��l� 1�a� ÿ �lÿ 1� cos��lÿ 1�a�
sin��lÿ 1�a� ÿ sin��l� 1�a� ;

A3 � ÿA1; A4 � ÿ
l� 1

lÿ 1
A2;

�33�

where A1 may be arbitrarily ®xed since it determines merely the magnitude of the velocity ®eld. On

the other hand, the condition on the normal stress given by (23) leads to

f 000�a� � �3l2 � 1� f 0�a� � ÿ rg

m
sin a
rlÿ2

: �34�

This equation determines l(a) only if the right-hand side is negligible. Thus the ansatz of (29)

represents the ¯ow within the corner for g! 0 or else for r! 0 with l< 2. If one of these

assumptions holds, l(a) is a real monotonically decreasing function in the range 0�37< a< 1�367 rad

(2> l> 0�646); for larger angles, complex roots of (34) are also possible. For a> p=4 we have l< 1

and then the vorticity

o � rlÿ1��l� 1�2f � f 00� �35�
diverges for r! 0. It should be noted that neither the force exerted on the solid nor the viscous

dissipation rate diverges in this case, as happens in the steady state solution by Huh and Scriven.25

We calculate this ¯ow for the case a� 1 rad (l� 0�814 . . .). To do this, we construct a closed

contour by smoothly connecting the sides of the corner with an arc of a circle (see Figure 2), where

we impose the values of c and @c=@n corresponding to the theoretical solution. We adopt a minimum

segment length Ds0� 0�001 at r� 0 and a maximum Dsq� 0�05 at the joint with the arc, which in

turn has been uniformly discretized. In Figure 3 we show a comparison between the numerical results

(symbols) and the exact analytical solution (lines) as a function of s near the apex (s� 1). A

remarkable observation is that o and @o=@n are well described by the numerical solution close to the

apex, where they diverge (see Figure 3(b)). In other words, there is no need for any special treatment

(such as the incorporation of the analytical nature of the singularity into the method14,16) of the apex

region other than a suitable discretization. In conclusion, the numerical code describes properly the

instantaneous velocity ®eld and its derivatives in corners limited by free and no-slip surfaces, even in

the presence of vorticity singularities.

Figure 2. Grid employed to calculate ¯ow within a corner. The no-slip surface extends from s� 0 to 1 and the free surface from
s� 1 to 2. The values of c and @c=@n from (29) are imposed on the circular arc from s� 2 to the end

8 S. BETELUÂ ET AL.

INT. J. NUMER. METH. FLUIDS, VOL 25: 1±19 (1997) # 1997 by John Wiley & Sons, Ltd.



Figure 3. Comparison between analytical solution (full lines) and numerical results (symbols) for test problem of Figure 2 near
apex: (a) c and @c=@n and (b) o and @o=@n obtained with Ds0� 0�001 and Dsq� 0�05
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3.2. Time evolution: Reversibility of ¯ow

In order to test the accuracy of the evolutionary part of the code, we should compare the numerical

results with the exact analytical unsteady solution of a problem with both free and no-slip surfaces.

Unfortunately, we do not have such a solution at hand and so we resort to the well-known time

reversibility property of Stokes ¯ows. In particular, we wish to show that the code is able to give

practically identical time evolutions for different discretizations.

In Figure 4 we show the contour evolution under gravity of a cylindrical hanging blob (g�ÿ1).

We start the calculation with a truncated cylinder of unity radius and height 0�5 upon a substrate; we

use Ds0� 0�005 at the contact line and Dsq� 0�05 at the centre of symmetry. The simulation was

stopped at t� 12 (crosses); then, by taking the contour at t� 12 as the initial condition, we let the

code run until t� 24 with g� 1 (circles). For this second ¯ow we change to a coarse grid with

Ds0� 0�01 and Dsq� 0�1. The coincidence between the pro®les with g�ÿ1 at t� 0, 3, 6, 9, 12 and

those obtained with g� 1 at t� 15, 18, 21, 24 respectively is representative of the code's ability to

describe properly the evolution of the ¯ow.

4. SPREADING OF A BLOB UNDER GRAVITY ON A NO-SLIP SURFACE

Consider an initial ¯uid con®guration in the form of an in®nitely long cylinder lying on a horizontal

rigid surface (substrate). The ¯uid is supposed to spread on the substrate only due to gravity, as in the

®rst stage of the experiments quoted in Section 1.13 In Figure 5 we show the evolution of the contour

for three different initial shapes of equal area s: (a) a truncated circular cross-section of unity radius

and height 1�9, (b) a truncated ellipse (axis ratio 1�5) with its major axis in the vertical direction and

(c) a square with rounded corners; we use r� m� g� 1, S� 3�08 and a discretization with

Ds0� 0�008 and Dsq� 0�08 (all quantities are in arbitrary units). During the calculation the area s
remains constant within 0�05 per cent. Each calculation of the instantaneous velocity ®eld on a PC

80486 at 50 MHz takes about 20 s; a complete evolution as shown in Figure 5 takes around 15 h,

starting with about 150 nodes and ®nishing with about 300. A noteworthy effect is displayed in case

(c), consisting of a remanence of high-curvature regions related to the initial corners. This affect

Figure 4. Contour evolution of a hanging blob. Initially it has the shape of a truncated cylinder of unity radius and height 0�5
and g�ÿ1. The contours for t� 0, 3, 6, 9, 12 are plotted with crosses (Ds0� 0�005, Dsq� 0�05), while the reversed ¯ow

(g� 1) is represented with squares for t� 15, 18, 21, 24 (Ds0� 0�01, Dsq� 0�1)
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cannot be ascribed to a numerical origin and is certainly due to the physical properties of the ¯ow

near a free corner.

As the ¯ow proceeds, the current head adopts in all cases a rounded shape characterized by the

ratio between the thickness h� at xcl and the width Dx� xf7 xcl. Here xf is the position of the leading

nose and xcl is the projection of the contact line between the free contour and the substrate. A

noticeable fact that has been observed in experiments is that the aspect ratio h�=Dx asymptotically

reaches a value close to four; this result is numerically reproduced as shown in Figure 6, where the

evolution of h�=Dx is plotted versus the ¯atness ratio h0=xf (h0 is the height at x� 0) for the three

cases of Figure 5. The asymptotic geometrical similarity of the current head may be visualized by

scaling the co-ordinates x and y with h�; in fact, this leads to a coincidence of the numerical pro®les

in the head region. In Figure 7 we compare an asymptotic numerical pro®le with the experimental

pro®les13 obtained for an axisymmetric blob of silicone oil with viscosity n� m=r� 1274�7 cm2 s±1

Figure 5. Height pro®les for blob spreading driven by gravity of different intial shapes of equal area: (a) circle truncated at its
base, (b) ellipse (axis ratio 1�5) with its major axis in vertical direction and truncated at its base; (c) square with rounded

corners. The pro®les are shown in the order t� 0, 1, 2, 4, 8, 16, 32, 64, 128
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and volume V� 1504 cm3; the extension of the spreading was 13< xf< 23 cm and h� ranged from

1�35 to 0�25 cm. As Dx< 0�02xf, the ¯ow near the current head may safely be assumed as plane in a

®rst approximation. Note that the general agreement is very good, except for the pro®le of triangles

which corresponds to h� � 0�25 cm� 1�67a and, in consequence, may be affected by surface

tension.13

A scaling law for h� may be easily obtained from dimensional analysis; in fact, if we take r, m, g

and the front velocity vf as the aracteristic parameters of the current head, we get

h� / mvf

rg

� �
:

r
�36�

Figure 6. Time evolution of aspect ratio h*=Dx of current head for cases of Figure 5. The symbols correspond to experimental
data from axisymmetric spreadings of silicone oil13

Figure 7. Comparison of an advanced numerical pro®le with experimental pro®les measured for an axisymmetric blob13 by
using silicone oils. The symbols correspond to h*� 0�25, 0�41, 0�75, 1�35 cm for a spreading of V� 1504 cm3

12 S. BETELUÂ ET AL.
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This relationship may be interpreted in terms of a balance between the weight of the head and the

vertical viscous force generated by the ¯ow, as they are respectively proportional to rgh�2 and mvf. In

Figure 8 the ratio b � h�= �p mvf=rg� is plotted versus h0=xf for the three cases of Figure 5; as the

spreading develops, b tends to a constant near 1�5, in agreement with the experimental data* for an

axisymmetric blob. As a result, the aspect ratio h�=Dx (� 4) and b (� 1�5) are independent of the

initial conditions, i.e. these quantities may be considered as representative of local properties of the

current head.

In order to give a more detailed description of the (asymptotic) head shape, we plot the angle f
(de®ned as the angle between the tangent to the contour and the positive x-axis) and the curvature k
as functions of the arc length s7 xcl (Figure 9). Note that k increases apparently without bound as

s! xcl, following approximately a logarithmic divergence. In spite of this divergence, f is a

continuous function of s, insuring a smooth connection between the free surface and the substrate.

Owing to the geometrical similarity, not only the shape but also the velocities of the contour in the

vicinity of the contact line reduce to universal curves when divided by vf; in Figure 10 we plot vx=vf

and vy=vf along the contour. Note that vg has a minimum at the nose of the head (about 0�45h� from

the contact line) and that vx has a broad maximum near 1�89h� from xcl. A noticeable result is that o
has a singular behavior in this region (see Figure 11). The divergence of both o and k is probably due

to the sudden discontinuity in the boundary conditions at the contact line. Likewise, a divergence on

@o=@n is also found there, together with some numerical oscillations on a few nodes. These

singularities might adversely affect the rate of convergence of the method for Ds0! 0. A

convergence test is depicted in Figure 11, where o(s) curves are plotted for different values of Ds0 (at

the contact line) and Dsq (at the centre of symmetry). Clearly, except for a region close to the contact

line, the o(s) curves are practically coincident.

In Figures 12(a) and 12(b) we plot the streamlines in the laboratory frame and in a reference

system moving with the leading nose velocity vf respectively. The curling of the streamlines in the

Figure 8. Ratio b � h�=
p�mvf=rg� versus ¯atness ratio h0=xf for cases of Figure 5 and comparison with experimental data13

(symbols)

* This value is not explicitly given in Reference 13 but may be calculated from the reported ®gures.
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Figure 9. Angle f and dimensionless curvature kh* versus (s7 xcl)=h* along free surface, showing continuity of f and
divergence k at contact line

Figure 10. Velocities along free surface in units of nose velocity vf

14 S. BETELUÂ ET AL.
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head region is evident, especially in the second representation. The equivorticity lines are plotted in

Figure 12(c); the high concentration of lines at the contact line is due to the divergence of o.

As concerns the global properties of the ¯ow, it must be noticed that the lubrication approximation

may be applied as h0=xf! 0. In this limit the height pro®le tends to5,6

h�x�
h0

� 1ÿ x

xf

� �2
" #1=3

�37�

(which holds for both plane and axial geometries).

To show the convergence of the two-dimensional ¯ow to this one-dimensional limit, we present in

Figure 13 plots of h=h0 versus x=xf for different values of the ¯atness ratio h0=xf, together with the 1D

pro®le given by (37). There is always a region near the contact point where the 2D pro®les differ

markedly from the 1D pro®le. However, the size of this region decreases as the spreading advances,

so that (37) is suitable for an increasing part of the ¯ow.

According to the numerical solution, the size of this region (say, h�) is related asymptotically to the

¯atness ratio as shown in Figure 14. This functional relationship is independent of the initial

conditions and has the form

h�

h0

/ h0

xf

� �1=2

�38�

An analogous dependence was also found in the axisymmetric experiments,13 as shown by the

symbols reported in this ®gure.

It is interesting to note that the above dependence may be interpreted in terms of a simple heuristic

approach. The spreading velocity consistent with (37) is

vf /
rg

m
h3

0

xf

�39�

(this proportionality holds for both plane and axial symmetries). On the other hand, (36) relates vf

with h�; thus, by substituting this expression into (39), we obtain the relationship of (38).

Alternatively, (38) may be obtained by matching the pro®le given by (37) and the 2D pro®le at x� xf,

where h� h�, bearing in mind the geometrical similarity of the head shape.

Figure 11. Convergence test: calculated o(s) curves for different values of Ds0 and Dsq near contact line
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Figure 12. Current lines (a) in laboratory system of reference and (b) in frame moving with velocity vf. (c) Equivorticity lines.
The values of c and o are in units of vfh* and vf=h* respectively
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5. CONCLUSIONS

We implement a numerical code by extending the boundary element integral method to solve

unsteady Stokes ¯ows in plane symmetry. The boundary may be spanned into sections of free and no-

slip surfaces. We test the ability of the code to describe the velocity ®eld corresponding to a given

boundary con®guration and the evolution of the free spans of the boundary. The ®rst aspect is tested

by comparison with the exact analytical solution for the ¯ow in a corner region, which exhibits

singularities of both o and @o=@n. The second aspect is tested by resorting to the reversibility of

Stokes ¯ows.

Figure 13. Dimensionless pro®les showing convergence to one-dimensional solution (37) for different ¯atness ratios

Figure 12. (continued )
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For the case of interest in this work, namely the viscous gravity spreading of a blob on a rigid no-

slip surface, we obtain the time evolution of the two-dimensional ¯ow. As the ¯atness ratio h0=xf

reduces, the current head acquires a de®nite shape, so that its pro®le may be reduced to a universal

curve when scaled with its height h� in the directions x and y. Besides, the calculated aspect ratio of

the current head, h�=Dx, is approximately four and h� scales with the square root of the front velocity

vf as given by (36) with a prefactor close to � 1�5. The agreement between these results and the

experiments reported elsewhere13 for h� larger than the capillary length a suggests that the advancing

mechanism simulated by the calculation is appropriate as long as capillary effects are not relevant.

The numerical results shed some light on additional interesting features of the ¯ow that

experiments could hardly reveal, which, as far as we know, have not been reported previously. The

shape of the head is given by a curve which smoothly connects the free surface with the substrate,

with the noticeable property that the curvature diverges logarithmically there. Likewise, we obtain a

detailed description of the streamline pattern (Figures 12(a) and 12(b)) and the vorticity distribution

(Figure 12(c)); all these curves are universal near the contact line because of the geometrical

similarity of the head. The vorticity distribution also diverges at the contact line.
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